For example:10÷5=2{\displaystyle 10\div 5=2}10÷−5=−2{\displaystyle 10\div -5=-2}−10÷5=−2{\displaystyle -10\div 5=-2}
For example:10÷5=2{\displaystyle 10\div 5=2}−10÷−5=2{\displaystyle -10\div -5=2}
For example:58÷−4{\displaystyle {\frac {5}{8}}\div -4}=58÷−41{\displaystyle ={\frac {5}{8}}\div {\frac {-4}{1}}}=58×−14{\displaystyle ={\frac {5}{8}}\times {\frac {-1}{4}}}=−532{\displaystyle ={\frac {-5}{32}}}
For example:−58÷−4{\displaystyle {\frac {-5}{8}}\div -4}=−58÷−41{\displaystyle ={\frac {-5}{8}}\div {\frac {-4}{1}}}=−58×−14{\displaystyle ={\frac {-5}{8}}\times {\frac {-1}{4}}}=532{\displaystyle ={\frac {5}{32}}}
For example:10×5=50{\displaystyle 10\times 5=50}−10×5=−50{\displaystyle -10\times 5=-50}10×−5=−50{\displaystyle 10\times -5=-50}
For example:10×5=50{\displaystyle 10\times 5=50}−10×−5=50{\displaystyle -10\times -5=50}
For example:58×−4{\displaystyle {\frac {5}{8}}\times -4}=58×−41{\displaystyle ={\frac {5}{8}}\times {\frac {-4}{1}}}=−208{\displaystyle ={\frac {-20}{8}}}
For example:−58×−4{\displaystyle {\frac {-5}{8}}\times -4}=−58×−41{\displaystyle ={\frac {-5}{8}}\times {\frac {-4}{1}}}=208{\displaystyle ={\frac {20}{8}}}
Remember that a positive number divided by a negative number will equal a negative number. Since 224÷7=32{\displaystyle 224\div 7=32}, you know that 224÷−7=−32{\displaystyle 224\div -7=-32}.
Remember that a negative number (-240km) divided by a negative number (-320km/hr) will equal a positive number (number of hours). Since 240÷320=. 75{\displaystyle 240\div 320=. 75}, you know that −240÷−320=. 75{\displaystyle -240\div -320=. 75}. So the falcon would take 0. 75 hours, or about 45 minutes, to dive 240 km.
Remember that a positive fraction divided by a negative number will equal a negative number. Since 710÷6=710×16=760{\displaystyle {\frac {7}{10}}\div 6={\frac {7}{10}}\times {\frac {1}{6}}={\frac {7}{60}}}, you know that 710÷−6=−760{\displaystyle {\frac {7}{10}}\div -6={\frac {-7}{60}}}.
Remember that a negative fraction divided by a negative number will equal a positive number. Since 56÷3=56×13=518{\displaystyle {\frac {5}{6}}\div 3={\frac {5}{6}}\times {\frac {1}{3}}={\frac {5}{18}}}, you know that −56÷−3=518{\displaystyle {\frac {-5}{6}}\div -3={\frac {5}{18}}}.
Remember that a positive number (5 days) multiplied by a negative number (-5 dollars) will equal a negative number (money lost). Since 5×5=25{\displaystyle 5\times 5=25}, you know that 5×−5=−25{\displaystyle 5\times -5=-25}. So Jason loses $25 after 5 days of buying donuts.
Remember that a negative number times a negative number will always equal a positive number. Since 12×5=60{\displaystyle 12\times 5=60}, you know that −12×−5=60{\displaystyle -12\times -5=60}.
Remember that a negative fraction (−16{\displaystyle {\frac {-1}{6}}} of a pie) times a positive number (3 days), will equal a negative number (amount of pie eaten). Since 16×3=36=12{\displaystyle {\frac {1}{6}}\times 3={\frac {3}{6}}={\frac {1}{2}}}, you know that −16×3=−12{\displaystyle {\frac {-1}{6}}\times 3={\frac {-1}{2}}}. So Rebecca has lost half of her pie.
Remember that a negative fraction times a negative number will equal a positive number. Since 47×7=287=4{\displaystyle {\frac {4}{7}}\times 7={\frac {28}{7}}=4}, you know that −47×−7=4{\displaystyle {\frac {-4}{7}}\times -7=4}